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Anharmonie Non-Gaussian Contribution to the Debye-Waller Factor. II. KCI 

BY G. S O L T * ,  N. M. BUTTt 
International Centre for Theoretical Physics, Trieste, Italy 

A N D  D. A. O ' C O N N O R  

Physics Department, Birmingham University, England 

(Received 2 October 1972; accepted 23 October 1972) 

M6ssbauer ~'-ray diffraction data obtained by the technique of O'Connor & Butt [Phys. Lett. (1963), 7, 
233-235] are analysed to deduce the anharmonic fourth-order term in the Debye-Waller factor for 
KCI and to estimate the third-order anharmonic coupling constant in this way. The theoretical treatment 
assumes that the displacement correlation function can be approximated by its large-distance asymptotic 
value. For the anharmonic coupling parameter (O m a n  estimate of - 6.2 x 1013 erg cm -3 is found, which 
differs by a factor of about 6 from that given previously by Leibfried & Ludwig. 

Introduction 

Departure from the Gaussian shape of the Debye- 
Waller factor as a function of sin 0/2 is one of the most 
prominent effects of lattice anharmonicity since it 
shows the limits of even the best quasiharmonic ap- 
proximation. Such deviation from the Gaussian ap- 
pears, for cubic crystals, through the fourth (and 
higher) powers of sin 0/2 in the exponent of the Debye- 
Waller factor. In a previous paper (Butt & Solt, 1971) 
a simple theoretical treatment was presented for cal- 
culating the quartic non-Gaussian term, and it was ap- 
plied to experimental results on NaCI. It was shown 
that by using accurate elastic diffraction intensity data 
for different scattering angles within a wide tempera- 
ture range, direct information on the anharmonic 
coupling constants can be obtained. Since a some- 
what detailed discussion can be found in the above 
reference, here only some essential points of the theo- 
retical model will be mentioned. The ),-ray diffraction 
peak intensity at momentum transfer k ([k[ = 
4n .  sin 0/2) is given by:I: 

I(k,T)~-lf(k,T)[ z 

To evaluate the quartic term the following two assump- 
tions have been used: 

(i) In the harmonic lattice, the displacement correla- 
tion function for two ions at different sites is en- 
tirely determined by the acoustical sound waves; 

(ii) Anharmonic forces can be represented by nearest- 
neighbour central interactions. 

This treatment is, in fact, a simplified version of that 
given by Wolfe & Goodman (1969) though with the 
advantage that some of the relevant physical param- 
eters enter here in a more explicit way. The experiments 
were performed by the M6ssbauer ),-ray diffraction 
technique (O'Connor & Butt, 1963) which allows mea- 
surement of the strictly elastic component of the dif- 
fraction intensity. 

The main result of this work is that the experiment- 
ally observed quartic term for KC1 shows, in fact, the 
expected behaviour as a function of temperature be- 
tween 293 and 523 °K, though with a much higher am- 
plitude than could be expected on the basis of previous 
estimates for the anharmonic coupling constants. This 
result is thus completely analogous to that obtained 
in the foregoing work for NaCI. 

where the Debye-Waller factorf(k ,  T) defined through 
the ionic displacement vector u can be expressed as 

f (k ,  T ) =  (exp {ik.  u } ) r = e x p  { - ½ ( ( k .  u)Z)r 

+~4[ ( (k .  u ) 4 ) r - 3 ( ( k .  U)2)2]-bO(k6)}. (1) 
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The difference between the Debye-Waller factors of the 
different kinds of ions is, for the present purpose, assumed to 
be negligible. This was seen to be irrelevant even for NaCl; 
thus for KCI the difference for form factors can safely be ig- 
nored. The notation ( )r means thermal average at temper- 
ature T. 

Results 

The present analysis has been focused on the Ik[ 4 term 
in the exponent o f f (k ,  T), which is completely absent 
when a harmonic or quasiharmonic description for the 
lattice vibrations applies. In the present case, with k 
pointing in the [100] direction, the quantity of interest 
is therefore 

4 2 2 (Ux)~- 3(.~)T 
D ( T ) = ~ 4  - - d 4  ........... (2) 

For this, one has the approximation expression (Butt 
& Solt, 1971) 

(kBT)3 ~v  ((/9111)2 
D ( T ) =  8(-47[C44d) 4 [- Ax~,(b)--4n~,44- d B,~,(b)] (3) 
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where T is the absolute temperature, Ux is the ionic 
displacement in the [100] direction, d is the nearest- 
neighbour distance at T=0,  C44 is the conventional 
notation for the shear modulus, ~0 I" and (ply are the 
third and fourth derivatives of the repulsive interac- 
tion potential and Axx(b) and Bxx(b) are simple lattice 
sums (Butt & Solt, 1971) determined by the structure 
and depending only on the quantity 

where in the denominator one has the displacement 
correlation function for nearest-neighbour ions. Using 
the value of Buyers & Smith (1968) for (U~)T one gets 
b=  1.36 + 0.02, and this gives for the lattice sums Axx 
and Bx~ the values 0.37 and 0.40 respectively. Using 
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Fig. 1. Elastic (zero-phonon) scattered intensity l(k, T) from 
KCI at different scattering angles v e r s u s  temperature: (a) 
for the 200 reflexion; (b) for the 400 reflexion. 

then the data C44=0"63x 1011 erg. cm -3 (Leibfried, 
1955) and d=3.11 A (Leibfried & Ludwig, 1961) one 
comes up with the expression 

/ ~0xv (Pnl]21"33} 1"78 10 .8 T 3 D(T)=[~,~¢ O'12- (~o,,,- ] . X (O0)  

where the quantities ~m= -0 .95  x 1013 erg cm -3, ~ v =  
0.11 x 1022 erg cm -4 and O0=257°K have been in- 
troduced as appropriate scaling units, being actually 
the calculated values of Leibfried & Ludwig (1961) for 
Debye temperature and anharmonic coupling param- 
eters. 

On the other hand, the quantity to be measured is 
the strictly elastic part of the diffraction peak intensity 
I(k, T) at different temperatures T and different reflex- 
ions klm. If one has, e.g., data for the k 1 = 2 0 0  and 
k2=400 reflexions at room temperature To and at 
other points T, by simple algebra one gets for the an- 
harmonic part 

1 
[D(T)-D(To)]=½ (k~d)2_(kfl)2 

1 I(kl, T) 1 
× . - ( ~  log -i(k~, To) (kfl) 2 log 

I(k2, T) 
l (kz, To) ] } 

1 [ I[(400), T] 
- 32zd ½ ¼ log I[(400), To] - l o g  

I[ (200), T] ] 
(4) 

I[(200), To] ] " 

To determine the strictly elastic part of the peak inten- 
sity, the M6ssbauer ),-ray diffraction technique (O'Con- 
nor & Butt, 1963; Butt & O'Connor, 1967) seems to 
be extremely well adapted, since inelastic contributions 
are not present even in the rough data. Some details 
of the M/Sssbauer diffraction set-up used for obtaining 
the present data were given in the previous paper (Butt 
& Solt, 1971) and here only the results for KC1 are 
discussed. In Fig. l(a) and (b) the intensity I(k, T) is 
plotted at two reflexions versus temperature, while 
Fig. 2 shows the exponent of the Debye-Waller factor 
divided by (k/4n)2=(sin 0/2) 2. In harmonic or quasi- 
harmonic approximation the two curves should coin- 

c ide,  both giving 16n 2 {(U2)T0 - (U2)T} and the differ- 
ence represents precisely the non-Gaussian behaviour 
of the Debye-Waller factor. (One notices that, at these 
temperatures, the deviation of the curves from the 
straight line itself is an effect of anharmonicity, but this 
can be described at least partly within the frame of a 
quasiharmonic theory.) Finally, Fig. 3 shows [ D ( T ) -  
D(To)], as processed from the data according to (4), 
versus (7"/00) 3. It is difficult to check accurately the 
predicted linearity since the statistical uncertainties (of 
about 1-2 %) are, especially for the 200 reflexion, con- 
siderably blown up by the small value of (sin 0/2) 2 in 
the final result. (The same can also be seen in Fig. 2.) 
Comparison with the theory can be made by deter- 
mining the slope of the line in Fig. 3, which for the 
above reasons is obviously difficult, and the approxi- 
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mate value of - 1 . 0 + 0 . 4 x  10 -6  is rather uncertain. 
One can go still further and estimate the anharmonic 
force constant ~'" by assuming that tpm/~ m and tp'v/ 
~v  are of the same order of magnitude and therefore 

D ( T )  ~_ - \~qii-] z2"374 X 10-s ( O  ° ) 

which leads to 

tp m _ (6.5 + 1.5)~ m= - (6.2 + 1.4) x 1013 erg cm -3. 

Owing to the small numerical coefficient before tp'v/~ TM, 
that ratio is almost completely uncertain and, in turn, 
it plays a much less important role in this anharmonic 
term. The final result is very similar to that obtained 
for NaC1, where the estimate of tp "l has given 4.2 times 
the value found by Leibfried & Ludwig (1961). 

As to the accuracy of the above values, one should 
mention that, in addition to the statistical errors al- 
ready discussed, no extinction effects were accounted 
for in the data processing. This was already noted in 
connexion with the results for NaCI (Butt & Solt, 1971) 
and the corresponding error should obviously be 
greater here where no data for the 600 reflexion were 
available and we had to use those for the 200 reflexion. 
Therefore, to check the above values, experiments at 
higher-order reflexions are required, the need for these 
being indicated already by the 200 data for NaCl which 
seemed not to be accurate enough for a similar dis- 
cussion. 

Conclusion 

The temperature dependence of the fourth-order an- 
harmonic term D ( T )  in the Debye-Waller factor for 
KC1 was theoretically estimat:d and was measured 
within the range 293-523°K. The experimental data 
seem to show the predicted trend, though the amplitude 
of the variation with temperature is much larger than 
expected. As a consequence, the third-order anhar- 
monic coupling constant obtainable from the present 
data turns out - within a statistical accuracy of ap- 
proximately 25 % - to be about six times as large as 
that predicted by Leibfried & Ludwig. The disagree- 
ment, or at least part of it, may be connected with ex- 
perimental uncertainties like statistical errors and 
neglect of extinction effects. 

Still, the very fact that, just as for NaCl, though by 
using different reflexions, the ratio ~pm/~.i for KCI 
was also found to be much larger than unity, indicates 
that the departure from the results of Leibfried & Lud- 
wig (1961) may be a real one. If this is the case, one 
has, of course, to choose between the two sets of 
values for ¢0 m and also explain why they differ from 
each other so greatly. In this connexion, besides em- 
phasizing again the need for further experimental 
work to test accurately the values given above, we may 
mention that the present method, principally, seems 
to be one of the simplest and most direct ways of deter- 
mining the anharmonic coupling coefficients. 
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Fig. 2. The quantity log [l(k, T ) / l ( k ,  To)]/(sin 0,/2) 2 versus tem- 
perature for the 400 and 200 reflexions. For harmonic or 
quasiharmonic lattice vibrations bo th  curves give 
16Jr~{( u~ )To-- ( U~ )r} and should therefore coincide. 
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Fig. 3. Deviation from the Gaussian form of the Debye-Waller 
factor rersus temperature as deduced from the experiments. 
To=293°K. Zero slope would correspond to Gaussian be- 
haviour. 
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On the Application of Phase Relationships to Complex Structures. V. 
Finding the Solution 
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Multisolution direct methods for solving crystal structures lead to many plausible sets of phases and 
some means of determining the correct set is necessary. For centrosymmetric structures, figures of merit 
are usually quite discriminating and the examination of only one or two E maps is necessary. For non- 
centrosymmetric structures, figures of merit are unreliable and the necessity of examining a large number 
of E maps can sometime prove to be an almost insuperable obstacle to finding the correct structure. 
A procedure is described for overcoming this difficulty. The Cooley-Tukey fast-Fourier-transform 
technique is used to compute E maps and all peaks greater than a certain height are located. A selection 
of the highest of these peaks, whose number is chosen by the program user, is then analysed with respect 
to bond lengths and angles. Favourable projections of coherent groups of peaks are output on the line 
printer in the form of integers representing the ranking order of the peaks and in positions which 
represent an undistorted projection of the group. Computing time is of the order of one minute per set 
of phases and the examination of a set .of 32 maps and finding the correct solution takes about 30 
minutes. 

Figures of merit 

Some direct methods of solving crystal structures 
systematically produce a large number  of plausible sets 
of  phases (e.g. Germain  & Woolfson,  1968) but  even 
when a unique solution is sought ambiguities in phase 
determinat ion are encountered which lead eventually 
to a mult isolution situation. In such cases it is the 
normal  practice to use various figures of merit  to rank 
the solutions in order of  plausibili ty and then to ex- 
amine  the E maps  in ranking order until the correct 
solution is found. 

The correctness, or otherwise, of  an E map  would be 
judged :by the presence of reasonably related groups 
of  peaks which could be interpreted in terms of the 
expected chemistry of the material.  To examine the 
three-dimensional  E map  the usual procedure is to 
draw contours of  sections on sheets of  glass or trans- 
parent  plastic material  and to view a stack of the sheets. 
Even then the interpretation of  the map  is complicated 
by the fact that a single molecule or other coherent 

structural unit  may  appear in fragments in various 
parts of  the contoured region. 

It is a matter  of  experience that  figures of merit  are 
quite good for indicating the correct set of  signs for 
centrosymmetric structures - normal ly  one need 
examine no more than two or three maps  - but  the 
situation is very much worse with non-centrosymme- 
tric structures. Various figures of merit  have been used, 
for example the 'absolute figure of merit '  (Germain,  
Main & Woolfson, 1971), RKar~e (Karle & Karle, 
1966) and the zero check (Cochran & Douglas, 1957). 
For  part icular structures one or other of  these may  
turn out to be more discriminating than the other two 
but often none of them is reliable and the correct set 
of  phases may be well down in the ranking order. 

The automatic interpretation of E maps 

With the availabili ty of  the Cooley-Tukey fast Fourier  
t ransform algori thm it is feasible to compute a large 
number  of E maps  - for an average structure and with 


